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#1: Data Contamination
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The lack of details on training data for closed-source LLMs raised
concerns on the issue of data contamination.

Existing research overlooks when this happens indirectly - for example
when models are updated from user data containing benchmarks.

We review 255 papers causing an indirect data leak by evaluating GPT-3.5
and GPT-4 through the ChatGPT interface.

We find that these models have been exposed to millions of samples from
hundreds of NLP benchmarks.



Closed-Source LLMs & Data Contamination

e Closed-Source: LLMs only accessible via APIs or Uls

e For such models, researchers don't have access to:
® Model weights
® Training data
® Other infrastructural details

e Data contamination: pre-training data may contain training,
validation and test sets of NLP benchmarks
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Indirect Data Leakage
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Why is Indirect Data Leakage important?

1. It's more difficult to trace due to possible subtle alterations

2. It comes with instructions included
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Results

We examined 255 papers, 212 of them interacted with closed-source models.

Out of these 212 papers, 90 (~42%) indirectly leaked data.

90 papers leaked ~4.7M samples form 263 NLP benchmarks.
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Results - Reproducibility
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Results - Fairness

No Comparison
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Unfair comparison: comparing the performance on different samples of a dataset.
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Suggested practices

e Access the model in a way that does not leak data
e Interpret performance with caution

e When possible, avoid using closed-source models
e Adopt a fair and objective comparison

e Make the evaluation reproducible

e Reportindirect data leakage
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#2: What Are We Even Measuring?
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Automatic metrics are quick proxies, but...

o Some have a poor correlation with human judgment

o Many cannot capture factuality or faithfulness issues in text

o Different implementations make results hard to interpret
and reproduce

o They can be over-reported without adding any
informational value



We collected papers from INLG 2023 and ACL 2023 Generation track and
annotated the following information:

e Name of the evaluation method

e Was the method newly introduced?

e Which task(s) was this metric used to evaluate?

e Did the authors comment on any correlation between automatic and human evaluation?
e Did the authors provide implementation details for the metric?

e Was the metric only reported in the Appendix?

e Did the authors explain the rationale for the metric?



110 papers total (36 from INLG and 74 from ACL)
102 papers included any evaluation

57% use human evaluation

94% use automatic evaluation

51% use both

634 counts of automatic metrics (283 unique)

ACL 2023 INLG 2023

Human Evaluation Automatic Evaluation Human Evaluation Automatic Evaluation



Metric Families & Categories

Metric Task Name

INLG ACL
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Text Properties
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Metric Family Name INLG ACL  Total

N-gram diversity
Style Classifier 5 37 42
BERTScore 8

Semantic Similarity
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Inference Speed 0

NN Y




What kinds of metrics were used?

Metric family use per venue
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Correlation with Human Evaluation
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Results per Task
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Rationalize your selection of metrics
Comment on metric combinations

Do not copy-paste widely used metrics
Respect the intended use of metrics

Discuss (dis)agreements between human and automatic

evaluation



Recommendations - Evaluation Reproducibility

e Share evaluation details
e Share data samples

e Release code



#3: Human Evaluation is Silver, Can We Make it Gold?



Experts or Stakeholders

Pros
Understanding of the topic
High quality feedback

Don't require instruction

Cons
Cost of time and effort
Low quantity of data
Potentially biased
Scalability



Crowdworkers (Prolific or Amazon Mechanical Turk)

N (o) n-EXPe rtS In-house annotators

Pros
e Gold standard of evaluation
e Flexible
e High quantity of data
e Significantly cheaper than

experts

Cons
Slow
Require thorough instruction
Questionable quality of data

Still expensive



Who are the people evaluating hallucinations?
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The # of human evals is growing, but their popularity is decreasing.
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Pilot, pilot, and pilot!

Use a small dataset annotated by experts as an attention check
Use filters to pick out annotators with a high approval rate
Carefully consider what kind of feedback you want to collect
Mind the cognitive load of the task

Some types of annotations are more subjective than others - you will

need more data to accurately capture trends

Share the details about the evaluation - and the data too!



#4: How (not) to do LLM as a Judge?
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Span Annotation
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LLMs as judges work for tasks where the data is online.

Data-to-Text MT Propaganda detection
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But they don’t have to work for new tasks...
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If you want to use them, validate them first!



FactGenie: A Tool for Span Annotation

qithub.com/ufal/factgenie

¥ factgenie @ O @

M &
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View data and annotated outputs. Collect model annotations. Collect human annotations.
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Generate model outputs. Compute annotation statistics. Manage resources.


https://github.com/ufal/factgenie

Thank you!

Correspondence to: schmidtova@ufal.mff.cuni.cz
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