Evaluation Challenges in the LLM Era

Patrícia Schmidtová

#1: Data Contamination

Leak, Cheat, Repeat: Data Contamination and Evaluation Malpractices in Closed-Source LLMs

Simone Balloccu Patrícia Schmidtová Mateusz Lango Ondřej Dušek

Charles University, Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics

Prague, Czech Republic

{balloccu, schmidtova, lango, odusek}@ufal.mff.cuni.cz

Overview

- The lack of details on training data for closed-source LLMs raised concerns on the issue of data contamination.
- Existing research overlooks when this happens indirectly for example when models are updated from user data containing benchmarks.
- We review 255 papers causing an indirect data leak by evaluating GPT-3.5 and GPT-4 through the ChatGPT interface.
- We find that these models have been exposed to millions of samples from hundreds of NLP benchmarks.

Closed-Source LLMs & Data Contamination

- Closed-Source: LLMs only accessible via APIs or UIs
- For such models, researchers don't have access to:
 - Model weights
 - Training data
 - Other infrastructural details
- Data contamination: pre-training data may contain training,
 validation and test sets of NLP benchmarks

Indirect Data Leakage

INDIRECT DATA LEAKAGE

Why is Indirect Data Leakage important?

1. It's more difficult to trace due to possible subtle alterations

2. It comes with instructions included

Results

We examined 255 papers, 212 of them interacted with closed-source models.

Out of these **212** papers, **90** (~**42%**) indirectly leaked data.

90 papers leaked ~4.7M samples form 263 NLP benchmarks.

Results - Reproducibility

Results – Fairness

Unfair comparison: comparing the performance on different samples of a dataset.

Suggested practices

- Access the model in a way that does not leak data
- Interpret performance with caution
- When possible, avoid using closed-source models
- Adopt a fair and objective comparison
- Make the evaluation reproducible
- Report indirect data leakage

#2: What Are We Even Measuring?

Automatic Metrics in Natural Language Generation: A Survey of Current Evaluation Practices

Patrícia Schmidtová^{1 ⋈}, Saad Mahamood², Simone Balloccu¹, Ondřej Dušek¹, Albert Gatt³, Dimitra Gkatzia⁴, David M. Howcroft⁴, Ondřej Plátek¹, and Adarsa Sivaprasad⁵

Introduction

- Automatic metrics are quick proxies, but...
 - Some have a poor correlation with human judgment
 - Many cannot capture factuality or faithfulness issues in text
 - Different implementations make results hard to interpret and reproduce
 - They can be over-reported without adding any informational value

Method

We collected papers from INLG 2023 and ACL 2023 Generation track and annotated the following information:

- Name of the evaluation method
- Was the method **newly introduced**?
- Which task(s) was this metric used to evaluate?
- Did the authors comment on any correlation between automatic and human evaluation?
- Did the authors provide implementation details for the metric?
- Was the metric only reported in the Appendix?
- Did the authors explain the rationale for the metric?

Overview of Results

- 110 papers total (36 from INLG and 74 from ACL)
- 102 papers included any evaluation
- **57%** use **human** evaluation
- **94%** use **automatic** evaluation
- **51%** use **both**
- **634 counts** of automatic metrics (**283 unique**)

Metric Families & Categories

Metric Task Name	INLG	ACL	Total
Overlap	71	201	272
Semantic Similarity	20	59	79
Match	15	61	76
Text Properties	12	63	75
Text Classifier	17	57	74
Factuality	49	21	70
Perplexity	3	37	40
Distance-based	1	15	16
Combination	0	14	14
Inference Speed	0	4	4

Metric Family Name	INLG	ACL	Total
BLEU	26	69	95
ROUGE	27	65	92
N-gram diversity	6	49	55
Style Classifier	5	37	42
BERTScore	8	32	40
Perplexity	3	29	32
METEOR	6	21	27
Semantic Similarity	9	12	21
Overlap	6	21	27
Factuality	5	13	18
Accuracy	8	8	16
Quality Estimation	7	7	14
Combination	0	14	14
BARTScore	2	10	12
Recall	2	44	6
Edit Distance	1	5	6
Flesch Readability	1	3	4
Inference Speed	0	4	4
Precision	1	2	3
loss/error	0	3	3
chrF++	1	1	2

What kinds of metrics were used?

Correlation with Human Evaluation

Results per Task

Recommendations - Evaluation Quality

- Rationalize your selection of metrics
- Comment on metric combinations
- Do not copy-paste widely used metrics
- Respect the intended use of metrics
- Discuss (dis)agreements between human and automatic evaluation

Recommendations - Evaluation Reproducibility

- Share evaluation details
- Share data samples
- Release code

Experts or Stakeholders

Pros

- Understanding of the topic
- High quality feedback
- Don't require instruction

Cons

- Cost of time and effort
- Low quantity of data
- Potentially biased
- Scalability

Non-Experts

Crowdworkers (Prolific or Amazon Mechanical Turk) In-house annotators

Pros

- Gold standard of evaluation
- Flexible
- High quantity of data
- Significantly cheaper than experts

Cons

- Slow
- Require thorough instruction
- Questionable quality of data
- Still expensive

Who are the people evaluating hallucinations?

The # of human evals is growing, but their popularity is decreasing.

Ensuring Quality of Crowdsourced Human Annotation

- Pilot, pilot, and pilot!
- Use a small dataset annotated by experts as an attention check
- Use filters to pick out annotators with a high approval rate
- Carefully consider what kind of feedback you want to collect
- Mind the cognitive load of the task
- Some types of annotations are more subjective than others you will need more data to accurately capture trends
- Share the details about the evaluation and the data too!

#4: How (not) to do LLM as a Judge?

Large Language Models as Span Annotators

Zdeněk Kasner¹, Vilém Zouhar², Patrícia Schmidtová¹, Ivan Kartáč¹, Kristýna Onderková¹, Ondřej Plátek¹, Dimitra Gkatzia³, Saad Mahamood⁴, Ondřej Dušek¹, Simone Balloccu⁵

Real-World Summarization: When Evaluation Reaches Its Limits

Patrícia Schmidtová Ondřej Dušek
Charles University* Charles University trivago
{schmidtova,odusek}@ufal.mff.cuni.cz saad.mahamood@trivago.com

Span Annotation

Just a 5-minute walk from Mall of the Emirates, DoubleTree offers modern accommodations. The hotel is 7.0 km from Dubai Marina and 12.1 km from Dubai Mall.

- ✓ Enjoy easy access to the Mall of the Emirates.
- × Enjoy breathtaking views across <u>the Hudson</u> <u>River to New Jersey and Liberty Island</u> from select suites.

LLMs as judges work for tasks where the data is online.

MT

Propaganda detection

But they don't have to work for new tasks...

If you want to use them, validate them first!

FactGenie: A Tool for Span Annotation

github.com/ufal/factgenie

Browse

View data and annotated outputs.

Generate with LLMs

Generate model outputs.

Annotate with LLMs

Collect model annotations.

Analyze

Compute annotation statistics.

Annotate with human annotators

Collect human annotations.

Manage

Manage resources.

Thank you!

Correspondence to: schmidtova@ufal.mff.cuni.cz

Or my LinkedIn:

This research was co-funded by the European Union (ERC, NG-NLG, 101039303) and by Charles University projects GAUK 252986 and SVV 260 698.